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Abstract. Air pollution, particularly from particulate matter (PM), poses serious public health and environmental risks,
especially in urban areas. To address this, accurate source apportionment (SA) of PM is essential for effective air quality
management. Traditional SA approaches often rely on offline data collection, limiting timely responses to pollution events.
SA applied on data from online techniques, especially with high temporalresolution is advantageous overoffline techniques,
enabling the study of the diurnal variability of emission sources and also the study of specific events. Recent technological
advancements now enable real-time SA, allowing continuous, detailed analysis of pollution sources. This study presents the
first application of the ACSM-Xact-Aethalometer (AXA) setup combined with SoFi RT software for real-time source
apportionment (RT-SA) of PM in Athens, Greece. The AXA setup integrates chemical, elemental, and black carbon data
streams, covering a broad spectrum of PM components and capturing a comprehensive representation of PM sources in an
urban environment. The results demonstrate that traffic-related emissions are the largest contributors to PM, with significant
contributions from secondary species such as sulfate, nitrate, ammonium, and secondary organic aerosols, which together
accounted forapproximately 57% of the PM mass. Primary sources such ashiomassburning and cooking contributed around
10% each, with natural sources like dust and sea salt comprising the remainder. The SoFi RT software is employed for
continuous SA, offering automated analysis of PM sources in nearreal-time (minutes afterthe measurements). Our findings
demonstrate that this setup effectively identifies majorpollution sources. This work underscores the AXA system's potential

foradvancing urban air quality monitoring and informs targeted interventions to reduce PM pollution.

1 Introduction

Air pollution, particularly the presence of particulate matter (PM), continuesto be a significant concern in urban environme nts
due to its adverse effects on public health and the environment (Cheung et al., 2024; Glojek et al., 2024; Katsouyanniet al.,

1995; Morawska & Zhang, 2002). To effectively manage and mitigate airquality issues, it is crucial to understand the specific
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sources contributing to PM levels. Source apportionment (SA), the process of identifying and quantifying these sources
(Hopke, 2016), is a critical tool in air quality management. Traditional methods of source apportionment, however, often rely
on offline analysis, which can introduce delaysin data collection and limit the ability to respond promptly to pollution events.
This hasled to the growing need for real-time, continuous source apportionment techniquesthat allow for faster, more detailed
insight into air pollution sources (Chen, Canonaco, Slowik, et al., 2022b).

In recent years, the implementation of real-time SA techniques has become possible due to significant advancements in
measurement technology and data processing capabilities. The development of high -resolution, real-time monitors, combined
with powerful computationaltools, enables the continuous collection and analysis of air quality data. These systemscan now
deliver near-instantaneous information about the composition and sources of particulate matter, allowing for more dynamic
air quality management (Ng et al., 2011, Drinovec et al., 2015; Fréhlich et al., 2013; Furger et al., 2020). This real-time
capability represents a majorshift in how air pollution is monitored and managed, enabling more effective interventions and
policy decisions aimed at reducing pollution exposure in urban environments.

The available online instruments offer the capability to measure various PM components. However, since no single instrument
can characterize all components, it is crucial to use a combination of instruments that collectively provide comprehensive
information, capturingmost of the PM mass. Additionally, these instruments must produce data with the same time resolution
to ensure compatibility foruse in source apportionment approaches. One instrumentalset-up that can coverthe entire range of
components is the Aerosol Chemical Speciation Monitor (ACSM), Xact multi-metal monitor, Aethalometer (AXA) set-up.
The ACSM measuresthe chemicalcomposition of non-refractory submicron particles (PM:) in real-time, including key species
such as sulfate (SO4>7), nitrate (NOs”), ammonium (NH4"), and organic aerosols (Ng, Herndon, et al., 2011). The ACSM is
especially valuable for identifying secondary-like organic aerosol (SOA) formation, traffic, cooking and biomass burning
emission, as these sources are oftenrich in organic particulate components (Chen, Canonaco, Tobler, et al., 2022b). The Xact
multi-metalmonitor offersreal-time measurements of elementsin ambient PM. Trace metalsare critical markersfor a variety
of pollution sources, particularly those related to industrial activities, traffic (e.g., brake and tyre wear), and combustion
processes. By continuously monitoring the elementalcomposition of PM, the Xact instrument helps to pinpoint both natural
sources (e.g., dust)andanthropogenicactivities (e.g., industrial emissions), which are crucial for a complete understandin gof
the PM burden in urban areas (M. Manousakas et al., 2021, 2022). Complementing the ACSM and Xact, the Aethalometer
measures black carbon (BC) concentrationsinreal-time. Black carbon is a primary component of PM that originates from the
incomplete combustion of liquid and solid fuels, making it a key indicator of traffic-related emissions (e.g., diesel exhaust)
and residential wood burning, respectively. The Aethalometer’s capability to differentiate between these sources by analyzing
the wavelength-dependence of light absorption provides further specificity in source apportionment(Zotteretal., 2017). Given
the strong association between black carbon and both health risks and climate impacts, its measurement is crucial for both
public health and environmental policy. The AXA setup represents a significant advancement in real-time air quality

monitoring, offering a comprehensive dataset that captures a wide range of PM characteristics. Each instrument in the setup
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playsa distinct role in measuring different aspectsof PM composition, and together, they provide a nearly complete picture of
the particulate matter mass.

Even though advancesin instrumentation have made near real-time source apportionment (RT-SA) approaches possible,
effortsin this area remain quite limited. Chenand co-authorsdemonstrated the application of an RT-SA technique fororganic
aerosols in three European cities analyzing ACSM data with an earlier version of SoFi RT (Chen, Canonaco, Slowik, et al.,
2022a). Theresults indicate that the RT-SA can provide very comparable results to best case source apportionmentapproaches,
if the RT-SA is set up properly. This study, even though it implemented state of the art optimized SA approaches, did not refer
to the total PM mass, but only on the organic fraction. Ina study conducted in Shenzhen, China a combination of instruments
thatprovided information about most of PM masswas utilized (Yao etal., 2024). In this study not all species thatare provided
from the instruments were used in the source apportionment analysis (e.g. only m/z 44 was used from Q-ACSM, and six
elementsfrom the Xact). Inanotherstudy thattook place in Delhi, India,an RT-SA methodology that reports the results online
hasbeen setup (Prakashetal., 2021). In this study, data were collected from an Xact,an Aethalometer, a total carbon anal yzer,
and low-cost sensors. Due to the nature of the input data, the apportionment focused primarily on the speciation of elements,
with no information provided about secondary species.

Source apportionment analysis is influenced by several critical factors, including uncertainties in the data, the number of
variables involved, and internal correlations between the variables, particularly when integrating data from multiple
instruments. Each of these factors affects the accuracy and reliability of the source attribution process.

When combining data from different instruments such as an ACSM, an Aethalometer, and an Xact, the precision of each
instrument in detecting specific pollutants varies. These uncertainties propagate through the apportionment model and can
reduce the confidence in the derived source contributions. The number of variables used in source apportionment, the temporal
variation of the fingerprints of the sources, the degree and frequency of transient sources, aswell as the internal correlation of
the variables also play a significant role. The ACSM measures mass spectral data that includes multiple fragments from the
same parentmolecules and hence are internally correlated with each other. Combining a large number of internally correlated
variables (ACSM), to a much fewer number of independent variables (Xact, Aethalometer), can lead to SA results thatare not
equally based on all instruments. In the literature, there are studies that report combining all variables from the ACSM and
Xact in a meaningful way to obtain comprehensive source apportionment results; however, none of these studies hasapplied
real-time source apportionment techniques (Belis et al., 2019; Yao et al., 2024), or they are not using all available variables
(Zhangetal., 2023).

Athens, Greece, is anideal case study for implementing this advanced monitoringapproach. The city experiences a complex
mixture of pollution sources, including local traffic, industrial activities, residential heating, and regional biomassburning, all
of which contribute to its air quality challenges (Diapouli etal., 2016; M. Manousakaset al.,2021). Additionally, these so urces
vary significantly over time due to weather conditions, seasonal changes, and daily traffic patterns. The real-time source
apportionment provided by the AXA setup offers the potentialto better characterize these sources and their fluctuations,

enabling more effective mitigation strategies.
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To harness the full potential of the data generated by these instruments, the SoFi RT (Source Finder Real-Time) software is
employed for continuous source apportionment. SoFi RT applies advanced statistical methods to separate and quantify the
different sources contributing to the PM burden, providing real-time insights into pollution events and their temporal
variability. This modelis designed to automatically collect, treat,and use the data for source apportionment analysis in multiple
flexible days, which, to the best of our knowledge, makes it the only commercially available model with such capabilities.
Similar capabilities are demonstrated in a software developed under the framework of Clean Air China project thatis currently
available for the participants of this project. This software offers RT capabilities but with very limited option compared to
SoFi RT (rolling window, BS and PR analysis, criteria based selection, averaging, etc).

In this paper, we present the first application of the AXA setup combined with SoFi RT in Athens. We demonstrate the system’s
ability to deliver real-time, continuous source apportionment by integrating chemical, elemental, and black carbon data
streams. This study highlights the effectiveness of this novel approach in capturing the majority of the PM mass, providing a
comprehensive understanding of the primary pollution sources in Athens. Our findings offerimportant insights for improving

air quality management and developing targeted interventions to reduce pollution levels.

2 Methodology
2.1 Sampling

The Demokritos station (DEM), positioned at270 metersabove sea level (37.995°N, 23.816°E), is a vitalhub foratmospheric
monitoring and research. Itisintegrated into majorresearch initiatives, such asthe Global Atmosphere Watch (GAW) program,
Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS), and PANhellenic infrastructure for Atmospheric
Compositionand Climate Change (PANACEA). Thestation is located on the National Centre for Scientific Research (NCSR)
"Demokritos" campus, within a vegetated area atthe foot of Mount Hymettus, approximately 8 kilometers northeast of Athens’
city center. Its location providesa unique vantage point for capturingsuburban aerosoldynamics influenced by urban pollution
under prevailing westerly winds and regional contributions during specific atmospheric conditions.

From March 1 to March 31, 2024, measurements of non-refractory PM1 components, i.c., organic matter, sulfate (SO4>),
nitrate (NOs7), ammonium (NH4*), and chloride (CI"), were conducted using a time-of-flight aerosol chemical speciation
monitor (ToF-ACSM) developed by Aerodyne Research Inc. (Billerica, MA, USA). This instrument operated with a time
resolution of 10 minutes, and data were subsequently averaged to 30-minute intervals for analysis. Detailed operational
parameters and calibration procedures for the ToF-ACSM are provided in (Zografou et al., 2022).

Equivalent black carbon (eBC) concentrationswere monitored during the same period using an Aethalometer AE33 (Magee
Scientific Corp., Berkeley, CA, USA), which employs the DualSpot Technology to compensate forthe filter matrix and filter
loading effectsin real time (Drinovec et al., 2015), while the multiple scattering is compensated by the H factor provided by

ACTRIS. In this study, eBC concentrations were reported at a wavelength of 880 nm, with a mass absorption cross-section
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(MAC) value of 4.6 m?2 g, asrecommended by (Kalogridis et al., 2017). Contributions of solid (eBCsf) and liquid (eBCIf)
fuel sources to eBC were quantified using the Aethalometer model by Sandradewi et al. 2008.

Hourly concentrationsof 37 elements (Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb,
Sr, Y, Zr, Nb, Cd, In, Sn, Sh, I, Ba,Hg, Tl, Pb, and Bi) in PM2.5 were measured from March 4 to March 26, 2024, using an
Xact 625i ambient metals monitor. Air was drawn through a filter tape ata flow rate of 16.7 liters per minute over a one -hour
sampling interval. The filter tape was then analyzed in an x-ray chamber with a rhodium anode (50 kV, 50 W) under three
sequential energy settings optimized to target specific element groups. Calibration and performance were verified using
Micromatterstandards, ensuring high accuracy in elemental measurements. The elements included in the analysiswere Si, S,
Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br, Sr and Pb.

2.2 Source apportionment
2.2.1 Optimized source apportionment analysis (OP SA)

The implementation of source apportionment can be distinguished into two different main processes: the Optimized Source
Apportionment analysis (OP SA), and the Real time Source Apportionment analysis (RT SA). The flow chart of these
approachesis presented in Figure 1. The first step in the source apportionmentapproach is to assess the situation in the area
by conductingthe OP SA. This involves utilizing all available toolsand adheringto a classical offline analysis protocol, where
data areanalyzed at the conclusion of the campaign. OP SA serves two purposes: it actsas a verification method for RT -SA
and establishes the baseline conditions in the area; the data generated can be used to set up RT-SA during its initial stages.

In this study, an initial OP SA was conducted using all available data, analyzed separately for the Xact (elemental content),
AE33 (BC data),and ACSM (organic content) datasets. Regarding the implementation of the RT, the model’s performance
was tested using optimal initial parameters and under less optimized, generic conditions. For the optimized operation of the
RT, the numberand types of sources (source profiles) identified by the OP SA were used asinitial parametersto configurethe
RT SA run. In both cases, the results of the RT SA were subsequently compared with those of the OP SA asa method of
evaluation and verification. The RT was implemented using the same data asthe OP SA, following the conclusion of the
campaign on simulating conditions. During this process, the raw files from the instruments were input into the RT model
without any pretreatment, replicatingnormal operational conditions. Thisapproach ensures a stable environment forevaluating
the model's performance, free from potential instrumental failures that could affect the results. Detailed descriptions of the

implementation of each step are provided in the following sections.
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Figure 1: Flow chart of the SA approach. There are two SA approaches: (Online) RT SA (red flow chart), and (Offline) OP SA
(green flow chart). Both approaches use the AXA data; RT SA uses untreated raw data, and OP SA uses treated data. OP SA serves
as the reference method. RT SA can be set up either by A. using optimized running parameters obtained by the OP SA, B. using
generic parameters that require little to no knowledge of the study area.

The theoretical foundations for applying PMF are extensively detailed in numerous publications (Manousakas et al., 2021;
Paatero, 1999; Paatero and Tappert, 1994). Briefly here, PMF is a mathematical tool used for source apportionment. It
decomposes a dataset into a set of factors and their contributions, helping to identify and quantify pollution sources. PMF
assumes non-negative values for factors and contributions, making it suitable for real-world environmental data. It allows
researchers to trace pollution back to its sources based on the chemical composition and temporal patterns of the collected
data. SoFi Pro (Source Finder Pro) by Datalystica was the tool used to implement SA.

SoFi uses the ME-2 (Paatero, 1999) solver, which allows exploring the rotationalspace around the base solution by introducing
limits and/orpenalties into the PMF model for deviation from predetermined values for the factor profiles and contributions
for one or more factors, a technique called constraining. The implementation of constraints is executed through the a -value
approach, in which one or more output factor profiles and/or time series are required to be within predefined limits of a
reference profile and/ortime series, with the tightness of constraint defined by the scalara (0 < a < 1). Constraintsmay a pply
to the entire profile or time series, or to selected variables and/ortime points only. The degree of freedom is regulated by the

scalara (a=0 means 0% allowed deviation from the anchor profile, and a=1 means 100% allowed deviation). Using constraints
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in elemental datasets has been shown to provide improved factor separation compared to conventional unconstrained PMF
(Canonaco et al., 2013; Daellenbach et al., 2023; Perrone et al., 2018; Stefenelliet al., 2019).

Additionally, SoFi offers the possibility of implementing a rolling window approach. It has been found in numerous studies
that the rolling window approach, first introduced by Parworth et al (2015), provides better results for organic aerosol SA
compared to the conventional techniques (Bhattu et al., 2024; Canonaco et al., 2013, 2015; Tobler et al., 2021), while to the
best of our knowledge, this technique has not been evaluated yet for high time resolution elemental composition data. The
rolling approach is described in detail under (Canonaco et al.,, 2021, Chen et al., 2022a) and only a short summary is given
here. This approach involves running PMF on a small subset of the data, referred to as a "window." The process begins with
the window, which is then shifted by a predefined time step, gradually covering the entire dataset. At each step, multiple
individual PMF runs may be performed, with the results either accepted or rejected based on predefined criteria scheme
controlling the quality of the modelled factors. The finalsource apportionment solution is determined by the setof all acce pted
PMF runs.

The specifics for each component SA are presented in the following subsections.

2.2.2 Elemental content

For the elemental component of OP SA, all data were used in a single dataset consisting of 515 hourly elemental PM2.5
measurements. The elements selected forthe analysiswere based on their signal-to-noise ratio (S/N) and their below detection
limit (BDL) values. In the end, 22 elements ranging from Si to Pb were selected for the analysis. To identify the optimum
solution, a number of factorsranging from 3 to 9 were selected. A 5-factorsolution was identified asthe most environmentally
reasonable and mathematically stable.

The selection of the number of factorsin the PMF analysisis identified asthe step with the highest uncertainty. In this study,
the optimal solution of the OP SA was determined by combining mathematical diagnostics (e.g., Q/Qexp, scaled residuals,
residual structure, and unexplained variation) with an evaluation of the physical relevance of the factors, based on indicators
such asdiurnal variations, correlations with external data, and time series analysis. A range of unconstrained solutions was
initially examined to identify the highest number of factors that could be interpreted with physical meaning. The solutions
were deemed mathematically suitable, when the residuals were found to be normally distributed, unstructured over time, and
consistent across all variables, in line with the findings of (Reff et al., 2007). Rotational ambiguity was addressed using an
approach similar to what it is described by (Canonaco et al., 2021). The a-value method (providing insights into rotational
ambiguity) was combined with the classical bootstrapping method (BS) and newly available perturbation analysis (PR). BS
analysisslightly alters the input by removing some entries and substituting them by repeating other entries. This accountsfor
the effect of a small set of observationsand random errorsin the solution. PR allows for perturbation of the dataset within the
uncertainties of the variables. The uncertainties can be multiplied by a factor; in this case,a factorof 1 wasused, meanin gthat
the values could vary within one reported uncertainty (a factor of 2 would mean double, and so on). The concept is that the

values canrange within +/- the uncertainty, with the absolute value being unknown in reality. The model perturbs the dataset

7
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randomly based on the uncertainty ora percentage of the uncertainty (the uncertainty ismultiplied with a random value between
+/- an user-defined value). The combination of BS with PR and a high number of runs allows for the evaluation of random
errors, measurement uncertainty, and the rotational ambiguity of the solution.

In this setup, the number of runs was set to 1000, with the a-value fixed at 1, and BS and PR enabled. With this setting the
model performs 1000 runs with slightly altered input at each occasion in terms of number of samples (BS) and absolute
concentration of the variables (PR). Since the order of the factors can change with each run, the user must either sort them
post-analysis or constrain them to maintain a fixed position. For this reason, all factorswere constrained using profiles from
the base run (original single run) with ana-value of 1, permitting a 100% variation in the anchor profiles. Using a high a-value
enables the identification of uncertainty without artificially reducing it by not allowing the factorsto vary too much from the
base case solution. Insuch cases, the constraint becomes less influential, aseach factorcan adopta wide range of shapes. The
reported solution is the average of all 1000 runs (no criteria selection used), and the uncertainty wasestimated asthe variation

of the runs, with an average uncertainty of approximately 10% or less across all factors.

2.2.3 Organic component

The OP SA PMF analysis of the organic component retrieved four factors, including a hydrocarbon-related OA (HOA), a
cooking-related OA (COA), biomass burning (BBOA), and one oxygenated OA (OOA). The initial step of the procedure
involved a set of constraint-free runs fora range of factorsfrom 3 to 6. After comparingthe 4-factorand 5-factorsolution, that
varied in the number of SOAs retrieved (one SOA vs two SOAs, respectively), in terms of Q/Qexp, the 4-factorsolution was
deemed more suitable. Then, the primary organics factorsthat were identified in the constraint-free runs were constrained one
by one for a series of profile-constrained runs to evaluate the suitability of the constraints. Using the profiles from the
unconstrained runs of the specific dataset for the Demokritos station ensures that the constraints are tailored to the site,
eliminating potential biases that could arise from relying on profiles from the literature, which may notaccurately reflect the
conditions of thearea. To assess the uncertainty of the solution and further optimize the retrieved profiles, the modelwas run
for1000 iterations constraining the profiles of the Primary Organic Aerosols (POAs) using the profiles from the previousste ps,
with BS enabled using a random a-value up to 0.3. Higher a-values are not suitable for ACSM data, as the identity of the
factors can change, in contrast to Xact data. The benefit of this approach is twofold. First, it allows for a comprehensive
assessment of the uncertainty in the solution by exploring the variability across multiple runs. Second, it optimizes the ret rieved
profiles by further fine-tuning them within realistic constraintswhile ensuring they remain representative of local conditions.
From these iterations, only the runs that met specific environmentalcriteria were selected, further enhancingthe accuracy and
reliability of the source apportionment results by ensuring alignment with real-world conditions.

A list of criteria was used to identify environmentally reasonable solutions. This list, based on the methodology described by
Chen, Canonaco, Tobler, et al. (2022), included several key elements to ensure the validity of the results. First, a t-test was

applied to verify thatthe correlation of the time series of HOA and BBOA with externaltracers of their respective emission
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sources (eBCIf for HOA and eBCsf for BBOA) was statistically significantly higher thantheir correlation with other factors.
This ensured that the solutions were physically meaningful and aligned with known emission sources.

Second, the ratio of lunchtime to early morning concentrations of COA was required to be greater than 1, reflecting the
expected diurnal variation typically associated with cooking emissions. Lastly, the fractions of m/z 43 (f43) and m/z 44 (f44)
forthe SOA were required to be positive, asthese valuesare indicative of secondary organic aerosol processes and must adhere
to physical and chemical plausibility. These rigorous criteria helped to refine the results by selecting only those solutions that
were consistent with known environmentaland chemical behavior, thereby improving the reliability and interpretability of the
source apportionment analysis.

In a previous study, (Zografou et al., 2022) identified five organic matter (OM) factors at the Demokritos station in Athens:
HOA, COA, BBOA, and two types of oxygenated organic aerosols (OOAs); one more oxidized (MO-OOA) and one less
oxidized (LO-OOA). However, in the current study, only a single OOA factorwasidentified. This finding is supported by the
POA-subtracted f44-f43 plot, which includes the triangle framework proposed by (Ng et al., 2011a). In cases where two OOAS
are present, the plot typically exhibits a linear relationship between f44 and f43, which was not observed in this study.
Furthermore, the massspectrum of the single OOA closely resembles that of the MO-OOA from the 2018 dataset reported by
Zografou et al. (2022), suggesting that the OOA identified in this study represents the more oxidized fraction of secondary
organic aerosols. The absence of a distinct LO-OOA may indicate differences in atmospheric conditions, such as reduced
variability in oxidation statesor changes in the sources and processes affectingthe organic aerosol composition between the
two datasets, takinginto accountthat thisstudy refers to a single month dataset compared to the year-long dataset used in the
previous study. This highlights the importance of site-specific and temporal factors in shaping the chemical composition of

atmospheric aerosols.

2.3 Real time source apportionment analysis (RT SA)
2.3.1 Description of the RT model and RT SA approach

The RT SA was conducted usingthe SoFi RT software developed by Datalystica Ltd., a toolspecifically designed to streamline
and automate the source apportionment (SA) process. This software integrates seamlessly with various instruments, as
illustrated in Figure 1, to collect raw data in real time. It then applies essential preprocessing steps, such as filtering,
blacklisting, corrections, and other necessary adjustments, before performing an automated SA run.

Once the instruments are operational, the software automatically detects when new data are generated and immediately
processes them. Within seconds of the data arriving, SoFi RT produces SA results, ensuring a near-real-time analysis
capability. The RT model results appear in the form of pie charts showing source contributions and detailed source profiles.
These outputsare updated at a time resolution equivalent to that of the instrument used, which is typically hourly or even more

frequent. This functionality provides an efficientand dynamic way to monitor source contributions in near-real-time, offering
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valuable insights on environmental processes also allowing for rapid decision-making and adaptive air quality management.
The RT application eliminates manual intervention, minimizes processing delays, and ensures consistency in the analysis.
Once the software is granted access to the relevant instrumental output files, which can be stored on any cloud service, the
entire process runs automatically. SoFi RT performstwo types of automated source apportionments: a more advanced method
(rolling PMF), where multiple PMF runs are conducted to assess errors based on statistical and rotational uncertainty, and a
simpler method using chemical mass balance (CMB) to provide real-time source apportionment results based on the most
recent scans. The software can operate with data from individual instruments (or PM components) separately, but it can also
process data from the entire AXA setup simultaneously.

To better understand the results of the RT and how to set the model up properly, it is important to know how it operates with
the AXA set up. The aethalometer data are decomposed to BC that corresponds to liquid (mainly traffic) and solid (mainly
biomass) fuelcombustion. The measured absorption coefficients at wavelengths 470 and 880 nm together with the alpha values
based on (Zotter et al., 2017)are used to estimate the contributions to eBC (equivalent BC from eBCIf and eBCsf. Moreover,
these fractions of BC can be used within the SoFi RT software in order to constrain the solution of the organic factors from
the ACSM, by e.g. performing t-tests on the correlation of their time series to the time series of factors of the same emission
(HOA and eBCIf, BBOA and eBCsf).

The apportionment of ACSM and Xact data is carried outas follows. First, the data from both instruments are automatically
combined into two diagonal blocks of one single input matrix. The model then classifies the data from the two instruments
into separate classesand retrieves automatically the instrument-specific constraints. The current version allows no interaction
between the data from the instruments, hence there will be factorsdedicated to either ACSM or Xact data. Thisinformation is
retrieved from the constraints information (anchor name and length) and is automatically identified and applied. The factor
contributions and profile of the counter-instrument is automatically set to zero, to have independent factor solutions. This
method is equivalent to conductingtwo separate PMF analyses, one foreach instrument, however it is performed in one single
ME-2 run. The results display all variables (ACSM and Xact)alongthe x-axis, but the factorsfor ACSM and Xact are reported
separately. The resulting time series of source contributions are separate for each instrument; they consist of a set of time
points equal to the rolling window length for the ACSM sources, and an equivalentset for the Xacr. Afterwards, the relative
contributions for the Xact-related data are included for these time points, while the ACSM contributions are set to zero.

The source contributions are presented in a consolidated pie chart that includes the sources of each PM component, though
derived from independent PMF runs. This approach hasthe advantage of providing information about the sources of PM for
species representing the entire PM mass. At the same time, it avoids the need to assume equivalent uncertainties for all
instruments or to assess whether the model is equally weighting the data from both instruments. The disadvantage is that the
secondary species are not apportioned to sources but rather to oxygenation states, as normally the case for ACSM.

As discussed, the data of the instruments are not combined prior to the analysis. Even though there are other possible
approaches, this was deemed the most reliable for RT implementation. A detailed overview of these approaches, along with

anevaluation, isprovided in the supporting material of (Cheungetal., 2024). The main advantages of the separaterun approach
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include a straightforward method for estimating uncertainties, low uncertainty for factors with minor contributions, robust
results that align well with RT approaches, reduced impact of apportionment uncertainty on high-mass variables, and easy
implementation by non-experts.

Different analytical techniques typically use distinct methods for estimating uncertainties, and this difference is especially
pronounced in inherently different methods, such asmass spectrometric and spectrometric or other analyticaltechniques. The
numberof variables and the internal correlations within the dataset from a single instrument, typically yields a result in which
instruments are systematically over/under-weighted. Considering that in RT, the treatment of uncertainties is an automated
process managed by a software designed to operate unattended and, in many cases, by non-experts, achieving accurate
uncertainty handling becomes an even more challenging task. By utilizing independent runs, the software can estimate the
uncertainty perinstrument using well established and tested approaches by the manufacturer of the instrumentsthat guarantee
robust results.

Since the RT capabilities of the model may be used not only by scientists butalso by monitoring networks and policymakers,
the robustness of the results is crucial. By utilizing separate runs and avoiding the need to scale the uncertainties, the re sults
become very robust. Additionally, including secondary species in the apportionmentintroducesa limited numberof variables
with very high massinto the analysis. Because of this uneven mass distribution, even low uncertainty in the apportionment of
these variables can lead to significant uncertainties in the contributions of the sources. Since these species are typically
apportioned to specific factors associated with secondary sources rather than attributed to primary sources, the loss of
information is not significant and does not justify the added uncertainty in the analysis.

The advantage of the above mentioned set-up, is that for the proper functioning of SoFi RT, the user needs to provide limited
initial information. Afterthat, the modelcan runautonomously. In this current version of SoFi RT, where the number of factors
is assumed to stay static, the user provides a) general storage settings, b) the totalnumber of factors (in this current version the
factors are fully instrument-independent), c) possible instrument-wise constraints information, ¢) various other model

parameters. This information can be either passed through an instruction file or directly interacting with the SoFi panels.

2.3.2 Organic RT SA

General details on how to set up and monitor the RT runs for the ACSM are provided by (Chen et al., 2022b). Briefly here,
since the RT requires as input the number of sources and an initial set of source profiles, the first step includes identifying this
information. If there is prior knowledge in the specific site, it can be used to set up the initial parameters. If not,seasonalpre-
tests are required to identify the numberof factorsthatare relevantin the region. This procedure is very important,asit will
setup the starting point of the modeliterationsand it is suggested to follow the analysis protocol described in (Chen, Can onaco,
Tobler, etal., 2022). The POAs are typically constrained using the a-value approach, while the SOAs or OOAs (oxygenated
OA) are left unconstrained. If more than one OOAs are present, the user needs to define additional criteria for repositioning or
sorting the unconstrained factors overthe single PMF runs. The modelcan utilize complementary measurements for validation

of the source apportionment results using the criteria-based selection, as performed manually in the past SA studies.
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As discussed earlier, this study aimed to assess the RT model's performance with optimal initial parameters and explore its
operation under less optimized, generic conditions. To achieve the first goal, we used OP SA results to set the organic RT SA,
constraining POA profiles while leaving OOA profiles unconstrained. The RT was set to perform a rolling window approach
with a-values equalto 0.1, a 5-day window with 1-day shift, 50 repeats per window and bootstrapping enabled. This setting
allowed the model to adjust the profiles to temporal changes. The window size was chosen because the dataset is small,
allowing for enough subsets and iterations. For longer datasets (e.g., 1 year), a more traditional method like the one in
(Canonacoetal., 2021)is recommended. The evaluation underoptimized conditions aimsto assess the stability of the model,
the processing of the raw files, and the overall performance.

For checking the performance of the model under non-optimized set up, we used as constraints the most commonly used
profiles worldwide based on the studies of (Crippa et al., 2013; Ng et al., 2011b). These profiles are used in numerous studies
to constraintthe POAs (Chen et al., 2022a). Generally, these profiles work well for HOA and COA because their fingerprint
is relatively consistent across different locations. HOA is typically associated with traffic emissions, which have similar
chemical characteristics globally due to the widespread use of similar fuels and combustion technologies. Similarly, COA
profiles are dominated by cooking emissions, which also exhibit comparable chemical signatures worldwide, driven by
commonalities in cooking practices and the types of oils and fats used.

In contrast, BBOA profiles are less consistent globally, as they are highly dependent on the type of biomass burned, the
combustion conditions, and regional variations in vegetation. Different types of wood, agricultural residues, or other biomass
materials produce unique chemicalmarkers during combustion. Additionally, variationsin burning methods (e.g., open fires,
stoves) and atmospheric conditions can furtheralterthe BBOA profile. As a result, using a generic global profile asa constraint
for BBOA may not capture the local and regional variability, leading to less accurate modeling outcomes for this source.
The performance of both approacheswasevaluated by comparingthe results of the RT SA to that of the OP SA and the results

are presented in a following section.

2.3.3 Elemental RT SA

Eventhough the RT function forthe OA hasbeen previously evaluated, itsapplication on Xact data hasnotyet been assessed.
Since in the RT model the source profiles and the number of sources are fixed parameters, the performance of RT can be
significantly affected by two main factors: variationsin the chemicalcomposition of source profiles and changesin the number
of sources. Unlike the OA data, where predicting the number and type of sources is relatively easier, often allowing for the
same profiles to be used as starting points independent from time and location, elemental composition data are much more
unpredictable. While certain factors with similar chemical compositions are common on a global scale (e.g., dust, salt,
secondary species, and possibly traffic), many others show significant variation depending on dominant local processes such
as industry or regional pollution patterns. Even in caseswhere sources share similar tracerprofiles, like dust for example, the
relative concentrations of variables within those factors can change based on the location and the type of dust (e.g., local

natural, local anthropogenic, or transported natural dust). Additionally, transient sources frequently appear, which can have a
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substantialimpact on elementalconcentrations, in case they become part of the main modelled factorsolution. These sources
are often short-lived and cannot be predicted at the beginning of the analyticalcycle. Even though there are studies that suggest
optimized SA approaches for offline SA analysis of Xact (Manousakas et al., 2022), they are quite complicated to operate
under RT conditions.

For the optimized RT SA the source profiles retrieved from the OP SA were utilized in this case aswell. The numberand types
of sources identified by the OP SA were used asinitial parametersto run the RT model. The model's ability to adapt to potential
changes in factor profiles relied on the selected a-value, which allowed for adjustments to the profiles when combined with
the rolling window approach. An a-value of 0.5 was chosen, enabling the model to modify the profiles by up to 50%. Higher
a-values (even 1) are possible forthe Xact,asthe zero values forsome variables, which almost alwaysexist, help maintain the
profile's identity more stable compared to what is usually the case for the ACSM. This approach provides the model with
flexibility to adjustthe profiles while maintainingalignment with the initial parameters. The success of this approach heavily
dependson the quality and representativeness of the initial parameters. To ensure optimal performance, locally derived OP SA
data must be available.

While the previous method is effective in delivering robust results and offering the modelsome flexibility to adaptto changes,
it requires prior knowledge of the specific area being studied. Increasing the a-value furtherenhancesthe model'sadaptability,
but there are limitations on how high it can be set without introducing modeling issues. For instance, setting an a -value of 1
provides significant flexibility by allowing all variables to potentially reach zero. However, variables thatare already at zero
remain fixed and cannot be adjusted, which can limit the model’s ability to capture certain dynamics accurately.

An additionallimitation is thatalthough all variables can theoretically reach zero, the maximum relative increase permitted is
only 100% (i.e., doubling their current value), which may be insufficient for variables with low initial concentrations.
Furthermore, allowing variables to reach zero can result in the model unintentionally altering the identities of factors. This
occurs when the model compensates by redistributing species into other factors, prioritizing those with higher initial
concentrationsthatalign with the zeroed variables. Consequently, this process can lead to factors effectively exchanging th eir
"identities,” undermining the consistency and reliability of the source apportionment results. To account for that, these
exchanged/mixed PMFruns can be effectively filtered out using proper (ideally based on statisticaltests) thresholds within the
criteria scheme.

The high effect that the zero values in the PMF input matrix have on the solution is also described in previous publications
(Paateroet al., 2002). The presence of zeros in profiles canplay a crucial role in maintainingfactoridentity, especially when
a significant number of variables are set to zero for each factor and there is minimal overlap in the zeroed variables across
different factors. These zeros effectively anchor the factors, preventing ambiguity and ensuring their distinctiveness (Table.
S1).

Building onthis observation, we developed a novel approach forcreatingconstrained profiles. This approach involved setting
certain variables to zero (those deemed irrelevant for factor identification) while allowing random initial values to the

remaining variables. This method allows the model to determine the relative concentrations of variables within each factor
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without imposing any predefined assumptionsabout theirrelative composition. By doing so, the model gains the flexibility to
adapt and allocate variables freely based on the data, ensuring that the profiles remain data -driven and unbiased.

This "zero/nonzero" strategy was tested to evaluate its ability to provide sufficient information for the model to accurately
identify relevant factors. Simultaneously, it removed constraints on the relative concentrations of species, offering a more
adaptable framework forthe model. The approach aimed to strike a balance between maintaining factor identity through zero
constraints and enabling a versatile, unconstrained exploration of the data to optimize the accuracy and reliability of source
apportionment results.

The performance of both approaches wasevaluated by comparingthe results of the RT SA to that of the OP SA and the results

are presented in a following section.

3 Results
3.1 OP SA results

To evaluate the performance of the RT model, its results were compared with those obtained using the classical offline
approach to source apportionment (SA). The outcomes of each approachare presented in separate sections foreach instrument.
For clarity, the results of the OP SA are detailed extensively in the following sections, while the RT SA results are presented

primarily in comparison to the OP SA outcomes.

3.2 Elemental component SA results

Following the SA approach described in the Methods section, six factorswere identified utilizing the elementalcomposition

data. The factor profiles are presented in Figure 2.
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Figure 2: Factor profiles for the elemental SA. The bars represent the normalized (Sum = 1) factor profile, while the stars represent
the normalized (Sum=1) contribution of the factor for each species.

3.2.1 Dust

Dust is traced by Si, K, Ca, Ti, Mn, and Fe. Greece, as the rest of the south European countries, is often affected by dust
transport events. Mineral dust, regarding its origin, has somewhat different composition, with the main difference being the
relative content of Al, Si, and Ca. Elements such as Fe and Ca, originate strongly from transported naturaldust, butalso have
significant localemissions either from anthropogenic dust emissionssuch as construction and the abrasion of buildingmateriak
and road surfaces (Ca), or traffic emissions (Fe) (Amato et al., 2013; Nava et al., 2012; Shaltout et al., 2018). For the
aforementioned reason, dust sources in certain regions may appear as two distinct sources, one which is Ca dominated and
represents local/urban dust or construction, and one thatis Al and Si dominated and represents naturaland/ortransported dust
(Manousakasetal.,2021). Ratios of Al and Sito Ca can be used to distinguish between anthropogenic and naturaltransported
dust (Shen et al., 2016; Skorbitowicz and Skorbitowicz, 2019). The Si/Ca ratio in the factor profile is approximately 1.5,
indicating that the factor is affected by both natural and anthropogenic emissions, which is common in urban environments.
The time series of source contributions for this source reveals some events that are attributed to long-range transportation
events (Fig. S3).
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3.2.2 Traffic related factors

In the analysis two factors that refer to vehicular traffic emissions have been identified; one factor refers to emissions from
brake wear, and one factor refers to emissions from tyre wear. Since we are focusing on the elementalcomponent of PM, both
correspond to non-exhaust emissions, asexhaust emissions contain mostly carbonaceous species (Harrison et al., 2021). Brake
wear factoris traced by Cr, Mn, Fe, and Cu. Cu is the most abundant element in brake lining having a concentration that
reaches>10%, while Cr, Fe, and Mn can also be emitted from brakingasthey are components of brake linings and/orthe brake
disc/drums (Thorpe and Harrison, 2008). The tyre wear factoris traced by Zn, Mn, As, and Pb, while Fe, Ca,and S contribute
significantly to the massof the factor. Although tyre wear is predominantly associated with the release of organic compounds,
approximately 13% of tyre composition consists of inorganic materials, such asthose found in curing agents, accelerators, and
various additives (Thorpe and Harrison, 2008). Additionally, several trace metals, including Cd, Cu, Pb, and Zn, are used in
tyre manufacturing. Among these, zinc hasthe most substantial presence in tyre tread, comprising about 1% of its total weight
(Kleeman et al., 2000). While the chemical compositions of tyre wearand brake weardo have some differences, their temporal
emission profiles provide a strong basis for differentiating. These time-based variations help distinguish the two sources in
real-time PM monitoring, aseach hasdistinct peak emission times linked to driving behavior, road use, and traffic conditions.
Tyre wear tends to be more continuous throughout the day, as tyres are in contact with the road surface during any kind of
driving; while it is suggested that particles from tyre wear are elevated during higher driving speeds (Gustafsson et al., 2008;
Kim and Lee, 2018; Yanetal., 2021). Brake wear emissions are more sporadic and directly related to braking intensity, which
typically increases during rush hours or in areas with stop-and-go traffic. Consequently, brake wear peaks during periods of
heavy congestion, especially in urban areaswhere frequent brakingoccurs, leading to higher PM contributions during morning
and evening rush hours. In traditional source apportionment (SA) analysis, which relies on 24 -hour filters, there is often
insufficient variability in the data to separate brake wear and tyre wear, resulting in both being grouped as a single source.
However, with hourly resolution data, these sources may be differentiated. The diurnal profiles of brake and tyre wear are
notably distinct: brake wear exhibits clear rush hour peaks, with noticeable spikes in the morning (around 07:00) and evening
(around 19:00), while tyre wear shows a more irregular profile, with a less pronounced peak around noon (12:00), when traffic
density is lower, and vehicle speeds are higher (see Figure S1 in SI). Traffic data from the nearby highway corroboratesthese
findings, indicating lower traffic density at 12:00 and higher density between 07:00-09:00 and 17:00-19:00, which aligns well

with the observed profiles for both factors (see Figure S2 in SI).

3.2.3 Salt

Salt factoris traced by Cl and refers to sea salt, as road slating rarely takesplace in Greece and especially during spring. The
interesting observation about this source is that it presents pronounced peaks during the same time as the dust transport eve nts
(Fig. S3). Sea saltcan be transported with African dust, especially during large-scale dust stormsthat originate from the Sahara

Desert. The process involves strong winds lifting both dust particles from the desert and sea salt from the ocean surface into
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the atmosphere. These particles can travel long distances together, becoming part of a mixed aerosol layer in the atmosphere
(Van Der Does et al., 2016; Goudie and Middleton, 2001). The mass concentrations of PM1 and PM2.5, as measured by an
Optical Particle Counter (OPC, GRIMM 1.109), are shown in the Supplement (Fig. S4). Periods during which chloride
appeared in the sea salt factoridentified by the Xact monitorbut was not detected by the ACSM, since the chloride contained
in sea salt is refractive and not captured by the ACSM. Moreover, these peaks corresponded to instances where the PM2.5
mass was significantly higher than the PM1 mass.

3.2.4 Sulfate

Sulfateis traced by S, and represents the secondary sulfates in the region. Sulfate hasbeen identified in the pastasan im portant
source in the region (Almeida et al., 2020; Amato et al., 2015, 2016). The area's climate conditions, characterized by low
precipitation and high solar activity promote the buildup of pollutantsand the generation of secondary particles. For instan ce,
model simulations suggest that SO2 is carried throughout the Mediterranean basin, where sulfate is formed as a result of
significant photochemical activity (Pikridas et al., 2013). Sulfates have been found to have similar concentrations in several
areasin the Mediterranean region (Argyropoulos et al., 2012), highlighting the regional characterof these secondary aerosol

species.

3.2.5 Regional

This factor representsregional pollution that is transported to the sampling site from most likely outside of the city. The factor
includes tracers from heavy oil combustion (V and Ni), biomass burning (K), as well as industrial processes (S, As, Br, and
Pb) (Jang et al.,, 2007; Samara etal., 2003; Sanchez-Rodaset al., 2007). In addition to local emissions, Athens is affected by
industrial activities in nearby areasand shipping emissions from the Port of Piraeus. Factories involved in manufacturingand
petrochemical production contribute significant emissions that can be transported to Athens by prevailing winds. Emissions
from heavy oil combustion and industrial activities are often grouped together in a source apportionment factor due to
synchronous transportation mechanisms that result in their simultaneous presence in the atmosphere, making it difficult for
models to effectively distinguish between sources. The unique geographic and meteorological conditions of Athens, including
its location in a basin surrounded by mountains, create an environment where pollutants can becometrapped. Prevailing winds
can carry emissions from both heavy oil combustion and nearby industrial sources into the city at the same time, leading to
overlapping pollutant plumes that complicate the identification of specific sources. Furthermore, both heavy oil combustion
and industrial activities release a variety of pollutants with similar chemical compositions. This overlap makesit challenging
to attribute specific air quality issues to a single source. Instead,a composite source apportionment factorisemployed to assess

the total impact of these emissions on air quality.
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3.3 Organic matter (OM) offline SA

The massspectrum of the identified factorsis presented in Figure 3, which covers an m/zrange up to 100. Higher massions,
often associated with polycyclic aromatic hydrocarbons (PAHSs), showed minimal contribution to the spectra in this case. The
two factors related to hydrocarbons, HOA and COA, are characterized by peaks at m/z 41 and 55, which are indicative of
alkanes,and atm/z43 and 57, also representative of alkane fragments (Zhangetal.,2005). These fragmentsare crucial markers
for identifying emissions from vehicle exhaust (HOA) and cooking sources (COA).

Adistinctive feature differentiatingHOA from COA is observed in the ratio of the m/z 55 to m/z 57 peaks. In the case of COA,
this ratio is greater than one, which is indicative of a predominance of lighter alkanestypical of cooking emissions (Mohr et
al., 2012). In contrast, HOA displays a ratio lower than one, reflecting the heavier alkanes often associated with vehicle
emissions.

The BBOA factor stands out due to a prominent peak at m/z 60, which is attributed to levoglucosan (and similar biomass
burning related compounds), widely recognized asa biomass burningtracer. This peak isa good marker foridentifying organic
compounds from wood or crop burning.

The OOA factor,meanwhile, is predominantly represented by a strong peak at m/z 44, which corresponds to the CO., a marker
for oxidized organic compounds, especially acids (Duplissy et al., 2011). This ion is a product of atmospheric oxidation
processes, such asthose occurring in SOA formation. The prevalence of m/z 44 is typically associated with the oxidation of
organic precursors in the atmosphere, reflecting the processing of primary emissions into secondary aerosols (Kanakidou et
al.,, 2005).
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Figure 3: Mass spectrum of the best-case of organics factors

The time series of the ACSM factorsretrieved from RT PMF appearin the SI (Fig. S5). An interesting event occurred on the

525 7th of March,when anannual Greek festival centered around meat grilling took place. During this event, there was a significant
spike in COA contributions, which was accompanied by a notable increase in BBOA concentrations. Figure S6 presents the
factorsdiurnaltrends. HOA concentrations were observed to peak twice per day, reflecting vehicle emissions, while COA also
presented a bimodaldiurnaltrend concentrations coincidingwith lunch and dinnertimes. BBOA showed a pronounced evening
peak, probably driven by the grilling event on 7th of March.

530 When comparing the base case solution factorsto external data, correlationswere found between the HOA factorand eBCIf,
with a Pearson correlation coefficient of 0.61. This suggests a moderate relationship between HOA and liquid fuel-related
particles. On the otherhand, the BBOA factorshowed a strongcorrelation with eBCsf, with a Pearson coefficientof 0.86. This

strong correlation underscores the close association between biomass burning sources and the BBOA factor.
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3.3.1 OP SA source contributions

The results presented here are derived from the OP SA butare formatted to be equivalentto the output provided by SoFi RT.
During RT operation, the pie chart of source contributions is updated within seconds afternew data from the instruments are
processed by the model, which typically occurs every hour or less.

When using the combination of AXA instruments in SoFi RT, the software generates a real-time consolidated pie chart that
includes sources from all individual analyses performed. However, in the version used in this study (SoFi 9.5.4), all source
contributions are reported separately in RT mode. While offline mode offersadditionaloptions, such as combining equivalent
sources, including ions in the pie chart, and adjustingdust contributions for the mass of corresponding oxides, these features
were notavailablein RT mode atthe time the study was conducted. However, they are included in the latest available version .
Consequently, the pie chart generated in RT mode represents only the apportioned mass of the analyzed species, rather than
thetotal PM mass. Future software updates will address these limitations, providing users with greater flexibility to custom ize
the graphical representation of the data according to their needs.

Figures 4 and 5 present the source contributions from the OP SA in a formatequivalentto what SoFi RT reports during real-

time operation, ensuring consistency with the RT reporting style.

Traffic  tyre wear

Figure 4: Consolidated pie chart of the average source contributions. The total mass does not include ions; dust is not adjusted for
the oxides; sea salt is not adjusted for the missing Na

20



555

560

565

570

https://doi.org/10.5194/egusphere-2025-542
Preprint. Discussion started: 24 February 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Sea salt
3%

Regional
2%

Figure 5: Consolidated pie chart of source contributions. Traffic is the sum of HOA, Break wear, Tyre wear, and BCIf; Biomass is
the sum of BBOA and BCsf; Dustis adjusted for the oxides; Sea salt is adjusted for the missing mass of Na; Sulfate factor from the
Xact is not included to avoid double mass counting; Chlorine from the ACSM is not included to avoid double mass counting

In Fig. 4, contributions from the same source category are represented using different shades of the same color to enhance
visualization and differentiation. The pie chartin Fig. 5 includes ions, adjustsdust to account foroxides, and incorporate sthe
missing mass of sodium (Na) in sea salt to provide a more comprehensive representation of source contributions.

The largest contributors are secondary species, which together account for 57% of the total mass. Among these, secondary
organics are predominant, followed by sulfate, nitrate, and ammonium. Notably, sulfate as measured by the ACSM shows
excellent agreement with the corresponding factor in the elemental SA analysis (1.24 pg/m?® from the ACSM vs. 1.28 pg/m?
from the elemental SA). This consistency underscores the reliability of the analysis.

Since thesite is classified asan urban background site, high concentrations of secondary species are expected, consistent with
previous findings (Eleftheriadis et al., 2021).

Among primary sources, Traffic emerges as the highest contributor. This category encompasses HOA, BCIf, and Break and
Tyre wear identified in the elemental SA. Biomass Burning and Cooking sources each contribute 10% of the totalmass. The
contribution of Cooking, however, is exceptionally high for this datasetand not representative of typical regional condition s.
This elevated contribution is attributed to a national celebration day included in the sampling period, during which widespread
barbequing occurs. Similar high contributions from cooking during such events have been reported in other local studies
(Manousakas et al., 2020).
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Natural sources, including Sea Salt and Dust, together account for 10% of the totalmass. These factorsare explored in detail
in the elemental SA section and are linked primarily to some transportation events that occurred during the sampling period.
Finally, the Regional factorcontributes 2% of the total mass. This factorisattributed to pollution transported from surrou nding

areas, as discussed in the corresponding sections.

3.4 Comparison of the RT results to best case SA analysis

In Figures 6 and 7, the ratios between the OP SA application,asdescribed in the previous section, and the RT implementation
of the a-value approach are presented. Based on this comparison, the RT model application results appear robust, with most
ratios being close to 1 for both instruments.
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Figure 6: Ratio of the source contributions of the RT SA analysis to the to the base-case offline SA application vs the source
contribution in pg m-3 for the organics based on offline SA, with lines indicating the ranges +10% from 1 (red) and £20% from 1

(black).
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Fig 7. Ratio of the source contributions of the RT SA analysis to the to the base-case offline SA application vs the source contribution
in pg m-3 for the elements-based offline SA with lines indicating the ranges £10% from 1 (red) and +20% from 1 (black).

To bettervisualize the quality of the RT solution compared to the OP SA solution for both instruments, the lines indicating the
+10% (red) and £20% (black) range from 1 in the ratio of RT/Base-case were added in Figures 6 and 7. In quantitative terms,
98 % - 100 % of the data were inside the +10% range in the case of COA, BBOA and OOA for the ACSM solution. For HOA,
lower percentage was observed within this range, and 84% was inside the +20% range. Concerning the elemental RT solution,

the ratio of RT to Base-case for the traffic-related factors, brake wear and tyre wear, was 63% and 77%, respectively inside
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the range £20%. Lower percentage inside the £20% range was observed for the Sea salt factor (57 %), while the highest
percentage was shown forthe Sulfate factor (90 %). Finally, 87 % and 81 % of the regional and dust factorsratios, respectiv ely
were within this range.

The comparison shows that the highest variability exists for low concentrationsand forfactorsthateitherare characterized by
high intensity events (sea salt) or have a high common number of tracers with other factors (HOA, Regional, Traffic).
Regarding Sea salt, the factorhas two unique features; it is traced by only one element, and it is expressed by high intensity
events. For these reasons, the factoris more sensitive to the BS runs the stability of the results is affected in the windows that
include the high intensity events. This effect might be mitigated by increasing the repeatsper window and by disabling the BS
analysis. In general, the results indicate that if site-specific profiles are used, the RT analysis can offer resultsthatare practically
identical to the best-case offline SA analysis.

As discussed in the previous sections, the implication with using site-specific constraints is that there needs to be prior
knowledge in thearea,oran initial test period needs to take place. Even though the software offersways for the modelto a dapt
to changes (rolling window, adjustable a-value), there is still the need for a relatively good and robust starting point in terms
of used profiles.

For the implementation of the elements-based RT-SA, the zero/non-zero approach was also used. This approach includes
setting the variables thatare not relevant to the factor to zero, while leaving the others free to assume any value. The profiles
that have been used to test this approach are presented in the SI (Table S1). The results of this approach were satisfactory
presenting very good reproduction of the best case solution regarding the R2 Pearson correlation of the time series of the
contributions of the solutions (traffic=0.88, sulfate=0.94, sea salt=0.99, dust=0.99), moderate for the regional factor (0.6 4),
and very low for the tyre wear (0.04). In the SI the scatter plots between the diurnal trends for the two approaches are ako
presented (SI Fig. S7). The R2 correlations in this case were lower, ranging from 0.18 to 0.7. From these results it can be
assumed that the factorsthat have lowmassdo not follow a consistent pattern; some factors can be reproduced (e.g. regional),
some factors can be reproduced only in some cases, while others cannot be well reproduced. Since in this zero/non -zero
approach there are no certain ratios that are fixed between elements, when the factors have high number of overlapping
elements, then the model can swap them assigning the mass of one factor to the other (mostly favoring the factor with the
higher mass). This is supported by the two slopes thatare visible in the scatter plot between the offline base case solution and
RT (SI Fig. S8). Overall, although the performance of this approachisnot exceptional, it can serve asa supplementary toolin
situations where prior information about the sourcesis unavailable. It can be utilized until sufficient data are collected t o enable
an OP SA evaluation.

The performance of the RT SA for the organic fraction was also evaluated by comparing the use of reference profiles to the
use of optimized profiles derived from local data. The time series generated by the RT SA using optimized profiles were
compared to those generated using reference profiles, revealing varying levels of correlation depending on the source.

For COA, the time series showed a strong correlation (R2=0.81) (Fig. S9), indicating that the reference profile adequately

represents the cooking organic aerosol emissions at the study site. This result suggests that COA has relatively consistent
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characteristics across locations, making reference profiles effective for this source. In contrast, the correlation for HOA was
moderate to low (R2=0.48) (Fig. S9). This indicatesthatwhile the reference profiles capture some general trends, they fail to
fully represent the local variability in traffic-related emissions. Factorssuch as differencesin fuel composition, vehicle types,
and driving conditions may contribute to this discrepancy. The BBOA time series showed very poor correlation (R2=0.20)
(Fig. S9) between the RT SA using the optimized BBOA profile and the RT SA using the reference profile. This result
highlights the spatialdependence of BBOA characteristics, which are influenced by factorssuch asthe type of biomassburned,
combustion practices,and local atmospheric conditions. Reference profiles for BBOA appearto lack the specificity needed to

accurately reflect the unique features of emissions at the study site as has been previously observed (Chen et al., 2022).

4 Conclusions

This study successfully demonstrated the integration of the ACSM-Xact-Aethalometer (AXA) setup with the SoFi RT software
for real-time source apportionment (RT-SA) of particulate matter in Athens, Greece. The findings underscore the potential of
real-time methodologies in advancingairquality management, offeringnear-instantaneous insights into pollution sources and
enabling dynamic responses to pollution events.

The AXA setup proved effective in providing a comprehensive representation of PM sources. By integrating chemical,
elemental, and black carbon data, the system has the ability to capture most of the PM mass, allowing for detailed source
characterization. The analysis identified traffic emissions as the dominant primary source of PM, with substantial contributions
from secondary species (57% of the total PM mass) such assecondary organics, sulfate, nitrate,and ammonium. Other primary
sources such asbiomassburning and cooking each contributed approximately 10% to the totalmass, with naturalsources like
dust and sea salt accountingfor the remainder. The consistency of these results across RT and offline analysesdemonstrated
the robustness and reliability of the RT methodology.

The results highlighted the diurnal patterns of specific sources, with traffic-related emissions peaking during morning and
evening rush hours, while cooking emissions spiked during weekends and special events. Additionally, the setup’s ability to
differentiate between non-exhaust traffic emissions, such as brake and tyre wear, provided valuable insights into source
profiles.

A significant methodological insight from this work is the approach to combining data from the AXA setup. While further
testing on combining AXA data prior to source apportionment analysisis warranted, this remainsan ambitious goal given the
current early stages of applying RT techniques. Combining data prior to analysis introduces challenges, such asdifferencesin
data uncertaintiesand variable correlations across instruments, which can lead to biased weightings or overrepresentation of
certain components. By maintaining separate analysesand combining results during post-analysis, the unique strengths of each
instrument are preserved, uncertainty propagation is reduced, and a more balanced attribution of sources is achieved.

The performance of the real-time source apportionment (RT SA) was evaluated under two distinct scenarios, highlighting the

flexibility and innovation of the methodology. In the first scenario, RT SA results were compared to those of the optimized
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offline source apportionment (OP SA). This comparison demonstrated that when site-specific constraints are used, the RT
modelcan deliver results closely aligned with the OP SA, showcasing its robustness and reliability underoptimized conditions.
In the second scenario, the RT SA performance was evaluated using the novel zero/nonzero approach forthe elemental data
and reference profiles for the organic data. The zero/nonzero strategy represents an innovative method of profile constraint,
selectively setting variables irrelevant to factor identification to zero while allowing others to vary freely, enabling grea ter
adaptability to local and temporal conditions. For the organic data, the use of reference profiles highlighted the challenges
associated with spatially dependent factors, such as BBOA, compared to globally consistent factors like COA. These
evaluations underscore the versatility of the RT approach, demonstrating its capacity to perform well under optimized
conditions while providing a viable alternative when prior site-specific information is unavailable.

The application in Athens illustrates the practicalutility of RT-SA techniquesin complex urban environments, where diverse
pollution sources and fluctuating conditions necessitate advanced monitoring capabilities. The outcomes of this study provide
a foundation for improving air quality management strategies and developing targeted interventions to reduce pollution
exposure effectively. Future studies are essential to furtherevaluate the stability and performance of the RT SA over extended
monitoring periods and under varying environmental conditions. Long-term studies will provide deeper insights into the
model's ability to adapt to seasonal variations, transient sources, and evolving source profiles. Additionally, exploring

alternative ways to utilize the AXA data, could significantly enhance its application in air quality management.
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